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[1] We have recently extended the global magnetohydrodynamic (MHD) model
BATS-R-US to account for pressure anisotropy. Since the inner magnetosphere dynamics
cannot be fully described even by anisotropic MHD, we coupled our anisotropic MHD
model with two inner magnetospheric models: the Rice Convection Model (RCM) and
the Comprehensive Ring Current Model (CRCM). The coupled models provide better
representations of the near-Earth plasma, especially during geomagnetic storms. In this
paper, we present the two-way coupling algorithms with both ring current models. The
major difference between these two couplings is that the RCM assumes isotropic and
constant pressures along closed field lines, while the CRCM resolves pitch angle
anisotropy. For model validation, we report global magnetosphere simulations performed
by the coupled models. The simulation results are compared to the results given by the
coupled isotropic MHD and ring current models. We find that in the global MHD
simulations coupled with ring current models, pressure anisotropy results in a thinner
magnetosheath, a shorter tail, a much smaller Earthward plasma jet from the tail
reconnection site, and is also important in controlling the magnetic field configuration.
The comparisons with satellite data for the magnetospheric event simulations show
improvements on reproducing the measured tail magnetic field and inner magnetospheric
flow velocity when including pressure anisotropy in the ring current model coupled
global MHD model.
Citation: Meng, X., G. Tóth, A. Glocer, M.-C. Fok, and T. I. Gombosi (2013), Pressure anisotropy in global magnetospheric
simulations: Coupling with ring current models, J. Geophys. Res. Space Physics, 118, 5639–5658, doi:10.1002/jgra.50539.

1. Introduction
[2] To take into account pressure anisotropy that has been

frequently observed in the Earth’s magnetosphere, for exam-
ple, the inner magnetosphere [Lui and Hamilton, 1992;
De Michelis et al., 1999], the magnetosheath [Phan et al.,
1994], and the plasma sheet [DeCoster and Frank, 1979;
Takahashi and Hones, 1988], we have extended the global
MHD model BATS-R-US [Powell et al., 1999] to solve
for anisotropic ion pressure. To distinguish from the stan-
dard BATS-R-US with isotropic pressure, we name the new
model Anisotropic BATS-R-US. The detailed description of
Anisotropic BATS-R-US, particularly its validation through
quiet-time magnetospheric simulations, has been presented
in Meng et al. [2012a].

[3] Although the anisotropic MHD model is more
advanced than the isotropic MHD model, it is still not appro-
priate in describing the inner magnetospheric dynamics. In
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fact, neither the isotropic nor the anisotropic MHD equations
can properly capture gradient-curvature drift [Wolf et al.,
2009], which is energy dependent and leads to the formation
of the ring current. Therefore, MHD models are not applica-
ble to simulate various physical processes of the near-Earth
plasma. A better approach is to employ kinetic models, espe-
cially during time periods of strong geomagnetic activity,
when the hot ring current plasma plays an important role.

[4] Several global MHD models have been coupled with
inner magnetospheric models, mainly the Rice Convection
Model (RCM) [Toffoletto et al., 2003] and the Compre-
hensive Ring Current Model (CRCM) [Fok et al., 2001].
The Lyon-Fedder-Mobarry (LFM) MHD model [Lyon et al.,
2004] is two-way coupled with the RCM [Toffoletto et al.,
2004; Pembroke et al., 2012]. The LFM model is also used
to drive the CRCM [Fok et al., 2006; Moore et al., 2008].
The Open Geospace General Circulation Model (OpenG-
GCM) [Raeder et al., 2001] is one-way coupled to RCM
[Hu et al., 2010]. The BATS-R-US MHD model is two-way
coupled with both the RCM [De Zeeuw et al., 2004] and the
CRCM [Buzulukova et al., 2010; Glocer et al., 2013]. These
coupled models successfully combine global MHD models
with kinetic ring current models, providing a key step toward
constructing a global general circulation model.

[5] No coupling between a global anisotropic MHD
model and a ring current model has been reported to date.
However, from a broader perspective of magnetospheric

5639



MENG ET AL.: PRESSURE ANISOTROPY IN MHD SIMULATIONS

modeling, equilibrium models with pressure anisotropy have
been coupled to ring current models. Zaharia et al. [2005]
fed their 3-D equilibrium code with anisotropic pressure in
the equatorial plane from the UNH-RAM ring current model
[Jordanova et al., 1997] and analyzed the computed mag-
netic fields and electric fields during a geomagnetic storm.
Wu et al. [2009] extended another equilibrium code RCM-
E, which has already coupled with the RCM, to include
anisotropic pressure. They also proposed the possibility of
coupling the equilibrium code with the CRCM. These stud-
ies are very insightful in examining the impact of pressure
anisotropy in the inner magnetosphere.

[6] In this paper we report the two-way couplings
between Anisotropic BATS-R-US and both the RCM and
the CRCM, which are somewhat different from the exist-
ing couplings between BATS-R-US and the two ring current
models. As an extension of the standard BATS-R-US code,
Anisotropic BATS-R-US belongs to the Global Magneto-
sphere (GM) component of the Space Weather Modeling
Framework (SWMF) [Tóth et al., 2012]. The Inner Magne-
tosphere (IM) component of the SWMF has several different
models, of which the most commonly used one is the RCM.
The coupling between Anisotropic BATS-R-US and the
RCM is simple and straightforward, given that the coupling
of the isotropic MHD version has been established already.
However, since the RCM assumes pitch angle isotropy, this
coupling will reduce or even eliminate pressure anisotropy
in the inner magnetosphere, thus greatly limits the capabil-
ity of Anisotropic BATS-R-US. Alternatively, the CRCM,
another model in the IM component of the SWMF, can
resolve pitch angle anisotropy. Therefore, it is more mean-
ingful to couple Anisotropic BATS-R-US with the CRCM
to obtain self-consistent solutions of pressure anisotropy
throughout the whole magnetosphere. This coupling requires
a new algorithm.

[7] The following content of the paper consists of four
sections. In section 2, we briefly review the models involved
in this study. In section 3, we describe the coupling algo-
rithms. In section 4, we present the validation tests including
idealized and storm time magnetospheric simulations. We
also compare the results from the RCM and CRCM coupled
models. Our conclusions are in section 5.

2. Background
2.1. Anisotropic BATS-R-US

[8] Anisotropic BATS-R-US is a three-dimensional (3-D)
MHD model that solves the anisotropic MHD equations
[Meng et al., 2012b] under the double adiabatic approxima-
tion with an additional pressure anisotropy relaxation term
based on the fire hose, mirror and ion cyclotron instability
criteria, and growth rates. The primitive pressure variables
in Anisotropic BATS-R-US are total pressure p and paral-
lel pressure pk. Perpendicular pressure p? can be obtained
through the relation

p =
2p? + pk

3
(1)

[9] Similar to the standard BATS-R-US model, when
applied to simulate the global magnetosphere, Anisotropic

BATS-R-US is driven by the upstream solar wind con-
dition, which can be either idealized or real data from
the ACE and WIND satellites. Due to the limited amount
of solar wind thermal pressure anisotropy measurement at
1AU, our input solar wind thermal pressure is taken to be
isotropic. Anisotropic BATS-R-US thus describes the pres-
sure anisotropy arising behind the bow shock and inside the
magnetosphere, as well as its global evolution with time.
Anisotropic BATS-R-US also has different options for limit-
ing pressure anisotropy. In the study presented here, we use
the default option that limits the pressure anisotropy based
on the growth rates of the instabilities.

2.2. RCM and CRCM
[10] Both the RCM and CRCM are kinetic models of the

Earth’s ring current, which is carried primarily by tens of
keV ions drifting westward in the closed field line region
surrounding the Earth. Both models are based on the bounce-
average calculation that treats the particle distribution as a
result of averaging over the particle bounce motions along
the closed field lines. The underlying assumption is that the
time scale of the inner magnetospheric plasma properties
variation is much larger than the particle bounce periods.
Furthermore, both models compute the magnetospheric elec-
tric fields self-consistently with the plasma distribution. In
addition, they use similar computational grids set in the
ionosphere based on longitudes and latitudes.

[11] Despite of their many common features, the RCM
assumes isotropic pitch angle distribution, while the CRCM
solves full pitch angle distribution. This is the major dif-
ference between the RCM and the CRCM, which results
in different pictures of the inner magnetosphere. Observa-
tions have found that the ring current region is characterized
by anisotropic ion and electron distributions during both
quiet time and disturbed time [Lui and Hamilton, 1992].
Even the plasma sheet, which has long been considered
to have isotropic particle distribution, contains electrons
with anisotropic pitch angle distribution, according to Walsh
et al. [2011].

3. Algorithm
[12] As the Global Magnetosphere (GM) component in

the SWMF, BATS-R-US is typically coupled with the Inner
Magnetosphere (IM) component and the Ionosphere Elec-
trodynamics (IE) component to conduct geomagnetic storm
simulations for the global magnetosphere. The IM com-
ponent contains several ring current models including the
RCM and the CRCM. The IE component is the Ridley Iono-
sphere Model (RIM), which is an electric potential solver
[Ridley et al., 2004].

[13] The general concept of the coupling between two
components is to interchange variables between the two
components periodically. In a typical GM-IE-IM combi-
nation, GM-IE and GM-IM are two-way coupled, while
IE-IM is one-way coupled. More specifically, GM sends
the field-aligned currents to IE and the magnetic field
configuration to IM. IE solves for the ionospheric elec-
tric potential on a two-dimensional (2-D) height-integrated
spherical surface and passes the electric potential to GM
and IM. IM sends the pressure of the inner magnetosphere
to GM. The three components connect together tightly by
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Figure 1. Force balance along the field lines for the idealized simulation with Anisotropic MHD +
RIM + CRCM at time t = 4 h. (top) The logarithmic parallel pressure (colors) and the field lines (white)
in the noon-midnight meridional plane from the MHD model. The black lines represent the closed field
lines for which the force balance conditions are shown in the bottom plots.

the messages passed around regularly. In terms of compu-
tational efficiency, one practical task is to determine the
optimal frequency of coupling one component to another,
so that the states of the two components have changed
significantly but not dramatically during the time interval
of two successive couplings. Note that coupling param-
eters including the coupling frequency and the rate at
which one model changes another can affect the simulation

results, and optimized values are obtained based on
many simulations.

[14] Although the two-way coupling algorithms between
BATS-R-US and both the RCM and the CRCM have been
developed [De Zeeuw et al., 2004; Glocer et al., 2013], these
algorithms need to be modified to accommodate the cou-
pling between Anisotropic BATS-R-US and the two ring
current models.

Figure 2. The logarithm of the total pressure in nPa in the equatorial (Z = 0) plane from the MHD model
at t = 8 h.
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Figure 3. The nightside total pressure profile extracted
along the X axis from the MHD model at t = 8 h.

3.1. Anisotropic BATS-R-US and the RCM Coupling
[15] The majority of the coupling between BATS-R-US

and the RCM [De Zeeuw et al., 2004] can be migrated
directly to the coupling between the Anisotropic BATS-R-
US and the RCM, except the pressure feedback from the
RCM to BATS-R-US.

[16] The RCM computes on a 2-D longitude-latitude grid,
on which closed field lines are rooted. For BATS-R-US with
isotropic pressure, the RCM passes the total particle pressure
(the sum of pressures of different species) for each closed
field line to BATS-R-US, and the BATS-R-US pressure in
every grid cell along that closed field line is nudged toward
the same RCM pressure, assuming the pressure is constant
along each closed field line. In Anisotropic BATS-R-US,
both the parallel and total pressures along a closed field
line are nudged toward the same RCM isotropic pressure
for that field line, given the RCM does not resolve pressure
anisotropy. This leads to a significant reduction of the pres-
sure anisotropy in the closed field line region in Anisotropic
BATS-R-US. The RCM can also provide BATS-R-US the
density, which is coupled the same way as the total pres-
sure, i.e., the BATS-R-US density along a closed field line
is nudged toward the RCM density, assuming the density is
constant along each closed field line. The density coupling
is the same for Anisotropic BATS-R-US.

[17] The coupling between Anisotropic BATS-R-US and
the RCM implants a ring current model into the global
anisotropic MHD model, yet the pressure anisotropy in the
inner magnetosphere cannot be completely resolved because

of the pitch angle isotropy assumption in the RCM. In order
to take full advantage of the anisotropic MHD model, we
seek coupling with another ring current model that allows
for anisotropic pressure.

3.2. Anisotropic BATS-R-US and the CRCM Coupling
[18] Recently, Buzulukova et al. [2010] and Glocer

et al. [2013] introduced the CRCM into the Inner
Magnetosphere component of the SWMF and implemented
the one-way and two-way coupling between BATS-R-US
and the CRCM, respectively. Since the CRCM can resolve
pitch angle anisotropy, it can calculate the parallel and
perpendicular pressure distributions in the inner magneto-
sphere. This provides a perfect opportunity of combining
the CRCM with Anisotropic BATS-R-US to obtain self-
consistent solutions of pressure anisotropy in the global
magnetosphere.

[19] The two-way coupling between Anisotropic BATS-
R-US and the CRCM requires a quite different algorithm
from the one addressing the two-way coupling between
BATS-R-US and the CRCM. In the Glocer et al. [2013]
algorithm, BATS-R-US sends the CRCM the 3-D magnetic
field configuration, and density and isotropic pressure as
boundary conditions, while the CRCM feeds BATS-R-US
the density and the total pressure at the magnetic equator for
each closed field line. The BATS-R-US density and pressure
along a closed field line are thus pushed toward the mag-
netic equatorial CRCM values on that field line. Same as the
coupling with the RCM, the assumption of constant density
and pressure along every closed field line is applied to avoid
field-aligned flows in the isotropic MHD model.

[20] Anisotropic MHD, on the other hand, has a differ-
ent requirement in order to maintain force balance along
field lines. More specifically, the force along magnetic field
can be obtained from the momentum equation [Meng et al.,
2012a] as

Fk = b � F

= b �
�
r

�
p? +

B2

2�0

�
+ r �

�
(pk – p?)bb –

BB
�0

��
= (pk – p?)Brk(B–1) + rkpk (2)

where b = B/|B| and rk = b � r. In the case of MHD
with isotropic pressure, (2) is simply rkp, which is zero with
our assumption of no pressure gradient along the magnetic
field. If the pressure is anisotropic, the first term of the final
expression in (2), which basically describes a mirror force,
i.e., adiabatic focusing, has to be balanced by the parallel

Figure 4. Pressure anisotropy ratio in the X = 0 plane from the MHD model at t = 8 h.
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Figure 5. (top) The magnetosheath number density, (mid-
dle) total pressure and (bottom) magnetic field strength
profiles extracted along the X axis from the MHD model at
t = 8 h.

pressure gradient along the magnetic field. Otherwise the
non-zero force will result in flows moving along closed field
lines in the anisotropic MHD solutions.

[21] Bearing the pressure gradient requirement in mind,
we look for an efficient coupling algorithm connect-
ing Anisotropic BATS-R-US and the CRCM. A natural
approach would be to pass the pressure distributions along
each closed field line from the CRCM to Anisotropic BATS-
R-US. Although this is doable, it is computationally expen-
sive as it requires additional arrays to be passed between
the two components that store the pressure values and their
locations along field lines. In addition, the parallel and total
pressures obtained in the CRCM do not necessarily satisfy
the force balance condition in the anisotropic MHD model.
To reduce the amount of information exchanged between
the two models and maintain force balance in Anisotropic
BATS-R-US, we build the algorithm based on Liouville’s
Theorem with the conservation of the first adiabatic invari-
ant and energy, so the density and pressure profiles along
magnetic field lines can be obtained from equatorial values
following Spence et al. [1987], Olsen et al. [1994], Liemohn
[2003], and Xiao and Feng [2006] as shown in Appendix A.

[22] The two-way coupling consists of two parts. On the
one hand, Anisotropic BATS-R-US sends the magnetic field
information to the CRCM. Also, the CRCM uses the den-
sity and pressures (parallel pressure and total pressure) at
the minimum magnetic field point on each closed field line
from Anisotropic BATS-R-US as boundary conditions to

construct a bi-Maxwellian distribution at the outer bound-
ary, i.e., the farthest closed field lines from the Earth within
an ellipse, the size and position of which varies in dif-
ferent simulations. On the other hand, the CRCM passes
Anisotropic BATS-R-US the density, the parallel and total
pressures computed at the minimum magnetic field point of
every closed field line, which are used by Anisotropic BATS-
R-US to derive the density and pressures at “non-minimum
B” locations along the closed field lines according to the
following relations (see Appendix A for a derivation).

n� =
n0

p?0/pk0 + B0/B�(1 – p?0/pk0)
(3)

pk� =
pk0

p?0/pk0 + B0/B�(1 – p?0/pk0)
(4)

p?� =
p?0

[p?0/pk0 + B0/B�(1 – p?0/pk0)]2 (5)

The subscript 0 denotes the location of the minimum mag-
netic field on a closed field line, and � indexes an arbitrary
point along that field line. The relation (1) is employed
to calculate the corresponding total pressure p�. Substitut-
ing equations (4) and (5) into equation (2) gives Fk� = 0
(also shown in Appendix A), therefore the pressure distri-
butions obey the force balance condition along the magnetic
field lines.

[23] The derivation of equations (3)–(5) is based on two
assumptions. First, there is no potential drop between the
“minimum B” point and the point at latitude � along the
field line. Second, the distribution function at the “mini-
mum B” point is a function of v2

k
/Tk + v2

?
/T?, where vk and

v? are the parallel and perpendicular velocities, and Tk, and
T? are the parallel and perpendicular temperatures, respec-
tively. This means that the relations are satisfied for a variety
of distribution functions, including bi-Maxwellian and bi-
Kappa distributions, that are reasonable approximations of
the particle distribution in the inner magnetosphere.

4. Global Magnetospheric Simulations
[24] To validate Anisotropic BATS-R-US and its cou-

plings with the two ring current models RCM and CRCM,
we perform global magnetospheric simulations and analyze
the differences between the anisotropic MHD and isotropic
MHD simulations, as well as the differences between
the RCM and the CRCM coupled simulations. We also
report the comparison of the geomagnetic storm simulations
to data.

4.1. Idealized Magnetosphere
[25] We have performed six idealized magnetospheric

simulations with different model combinations in the
SWMF:

[26] 1. Anisotropic MHD Model + RIM
[27] 2. Isotropic MHD Model + RIM
[28] 3. Anisotropic MHD Model + RIM + RCM
[29] 4. Isotropic MHD Model + RIM + RCM
[30] 5. Anisotropic MHD Model + RIM + CRCM
[31] 6. Isotropic MHD Model + RIM + CRCM
[32] The first two simulations do not contain any ring

current models, thus they serve as the baselines for compar-
isons. All six simulations use identical parameters for the
same models.
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Figure 6. The X direction velocity contour overplotted with the magnetic field lines in the noon-
midnight meridional Y = 0 plane from the MHD model at t = 8 h.

[33] The global MHD model is set up in a 3-D box
extended from –224 RE to 32 RE in the X direction and from
–128 RE to 128 RE in the Y and Z directions in the GSM
coordinate system. The inner boundary is at 2.5 RE from
the center of the Earth. The grid resolution varies from the
smallest 1/8 RE grid cells close to the Earth to the largest
8 RE grid cells far down the magnetotail. The total num-
ber of cells is 1.8 million. As idealized conditions, we align

the magnetic axis with the ecliptic north direction and drive
the MHD model with constant solar wind condition and
southward IMF: number density nsw = 5 cm–3, tempera-
ture Tsw = 105 K, velocity uxsw = –400 km/s, uy,zsw = 0,
magnetic field Bx,ysw = 0, and Bzsw = –5 nT. We use TVD
Lax-Friedrich scheme [Rusanov, 1961] with the Koren lim-
iter [Koren, 1993], explicit time stepping and Boris factor
0.02, i.e., the reduced speed of light is 6000 km/s.
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Figure 7. The sign of Bz in the Z = 0 plane from the MHD model at t = 8 h. Green represents regions
with nonpositive Bz, and red represents regions with positive Bz, i.e, closed field line regions.
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Solar wind and IMF conditions for 21 - 22 July 2009
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Figure 8. The input solar wind and IMF conditions of the
MHD model for the 21–22 July 2009 storm.

[34] For the ionosphere model RIM, we assume a constant
Pedersen conductance 5 mho and zero Hall conductance.
For the RCM, its initial particle distribution is calculated
from the MHD solutions of the density and temperature in
steady state. For the CRCM, its initial particle distribution is
based on quiet time ring current data from the AMPTE/CCE
spacecraft [Sheldon and Hamilton, 1993].

[35] All simulations are started with 5000 iterations using
local time stepping in the MHD model that exchanges infor-
mation with the RIM every 10 time steps to achieve steady
states. Then they are switched to the time accurate mode,
and for the last four simulations, are coupled with the RCM
or the CRCM. In the time accurate mode, the MHD model
is coupled with the RIM every 5 s and with the RCM or the
CRCM every 10 s, and the RIM is one-way coupled to the
RCM or the CRCM every 5 s. These coupling frequencies
are optimal to minimize the computational cost meanwhile
ensuring the accuracy of the solutions. The time accurate
simulations last for 8 h.
4.1.1. Force Balance Along Closed Field Lines

[36] As mentioned in section 3, the coupling between
Anisotropic BATS-R-US and the CRCM is built in a way
that the force balance condition along closed field lines is
satisfied in the presence of pressure anisotropy. This can be
verified by extracting closed field lines in the MHD solution
of simulation 5: Anisotropic MHD + RIM + CRCM, and cal-
culate the forces along these field lines based on the force
expression (2).

[37] Figure 1 shows examples of the force balance anal-
ysis. The top plot displays the logarithmic parallel pressure
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Figure 9. The measured 1 min SYM-H and the simulated
SYM-H for the 21–22 July 2009 storm. The blue lines rep-
resent the RCM coupled simulations, and the orange ones
represent the CRCM coupled simulations. The solid lines are
for anisotropic MHD, while the dashed ones are for isotropic
MHD.

and the magnetic field lines in the noon-midnight meridional
(Y = 0) plane at t = 4 h from simulation 5. We extract
two closed field lines at different locations on the nightside,
marked by the black lines. Using the parallel and perpendic-
ular pressures and the magnetic field strength in each grid
cell along these two field lines, we calculate the force contri-
butions from the mirror force, i.e., the first term in (2), and
from the gradient of the parallel pressure, i.e., the second
term in (2). The bottom plots show the forces along these
field lines starting from near the inner boundary of the MHD
model in the northern hemisphere. In both plots, the mirror
force represented by the dotted line and the negative paral-
lel pressure gradient represented by the dashed line are very
close to each other. The resulting net force represented by
the solid line is approximately zero. The plots demonstrate
that the force balance condition is satisfied along the two
particular field lines, with some limited discretization errors.
Our simulations show no fast field-aligned flows inside the
inner magnetosphere, which also confirms the force balance
condition.
4.1.2. Pressure Distribution

[38] The plasma pressure distribution in the inner mag-
netosphere is a direct indication of the ring current. We
expect higher inner magnetospheric pressure in the ring cur-
rent model coupled simulations 3, 4, 5, and 6 compared to
the simulations without ring current models. Figure 2 dis-
plays the plasma pressure, in the case of anisotropic MHD,
the total plasma pressure, from the global MHD model in the
equatorial (Z = 0) plane at t = 8 h. The top three plots are
from the three simulations with the anisotropic MHD model,

Table 1. Root-Mean-Square Errors of the Simulated Sym-H for
the Two Storms

Time Interval Run I Run II Run III Run IV

18 UT, 21 Jul–0 UT, 23 Jul 51.3 nT 58.1 nT 62.3 nT 75.6 nT
0 UT–12 UT, 22 Jul 22 37.7 nT 37.3 nT 42.9 nT 57.5 nT
2 UT, 5 Apr–4 UT, 7 Apr 13.9 nT 19.1 nT 14.6 nT 27.0 nT
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Figure 10. The CRCM simulated total pressure in the Z = 0 plane for different times on 22 July
2009. (top) Results from the anisotropic MHD driven case; (bottom) results from the isotropic MHD
driven case.

and the bottom ones are from the three simulations with the
isotropic MHD model. The comparison among the three top
plots shows a much stronger nightside pressure from the
RCM or the CRCM coupled anisotropic MHD simulations
than from the anisotropic MHD simulation without any ring
current model. This validates the effect of the couplings with
the RCM and the CRCM, which is consistent with the results
from the isotropic MHD simulations shown in the bottom
plots. Comparing the anisotropic MHD and isotropic MHD
simulation results, we observe higher nightside pressure in
the MHD only simulations (Figure 2, left column) and in
the CRCM coupled simulations (Figure 2, right column), but
lower nightside pressure in the RCM coupled simulations
(Figure 2, middle column) for the anisotropic MHD model
than for the isotropic MHD model. Comparing the RCM and
the CRCM coupled simulations, the latter produces stronger
pressure in the anisotropic MHD model but weaker pressure
in the isotropic MHD model. Compared to the RCM cou-
pled simulations, the CRCM coupled simulations also show
more dawn-dusk asymmetry (dusk preferred) in the pres-
sure distributions, which is caused by the weaker shielding
of the inner magnetospheric electric field in the CRCM than

in the RCM. Although the RCM and the CRCM coupled
simulations react oppositely in terms of changes in the pres-
sure magnitude that resulted from the inclusion of pressure
anisotropy in the MHD model, they exhibit similar changes
in the size of the inner magnetosphere. When comparing
the top and bottom plots in the middle and right columns,
we find that the influence of the IM pressure is greatly
reduced with anisotropic MHD in comparison with isotropic
MHD. We have also noticed that the position of the bow
shock varies in these simulations, which will be addressed in
section 4.1.3.

[39] A more straightforward comparison of the nightside
pressure strengths from different simulations is shown in
Figure 3. In this figure we plot the nightside pressure along
the Sun-Earth line, i.e., the X axis, from the global MHD
model. The solid lines represent anisotropic MHD, and the
dotted lines represent isotropic MHD. Compared to the two
simulations without ring current models identified by the
black lines, we see significant pressure increases in the sim-
ulations with the RCM and the CRCM, identified by the blue
and orange lines, respectively. The plot clearly shows a little
pressure increase in the anisotropic MHD only simulation,
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Figure 12. The CRCM simulated pressure anisotropy in the Z = 0 plane at (top) 6 UT, (middle) 8 UT,
and (bottom) 12 UT on 22 July 2009 for the (left column) anisotropic MHD driven and the (right column)
isotropic MHD driven cases.

a large pressure increase in the CRCM coupled anisotropic
MHD simulation, but a large pressure decrease in the RCM
coupled anisotropic MHD simulation, compared to the cor-
responding isotropic MHD simulations. Both the RCM and
the CRCM coupled anisotropic MHD simulations produce
a single pressure peak at around x = –5 RE. The pressure
gradient toward the Earth (which leads to eastward inner
ring current), is not very distinctive in the isotropic MHD
simulations especially the CRCM coupled one (orange dot-
ted line) in which the pressure gradient toward the Earth is
very small.

[40] In the anisotropic MHD simulations we can also
look into pressure anisotropy. Figure 4 shows the pressure
anisotropy ratio P?/Pk in the Z = 0 plane at t = 8 h

from the MHD model. In the inner magnetosphere region
within 8 RE radius, the RCM coupled simulation has the
least amount of pressure anisotropy with an exception of a
parallel pressure dominated small region close to the Earth,
while the CRCM coupled simulation has the strongest pres-
sure anisotropy with the perpendicular pressure dominating
in general. This is expected, since the coupling with the
isotropic RCM drives the pressure toward isotropy in the
closed field line region. Therefore, the RCM coupled simu-
lation produces less pressure anisotropy than the anisotropic
MHD only simulation does. The CRCM coupled simulation,
on the other hand, produces more pressure anisotropy than
the anisotropic MHD only simulation does, behind the mag-
netosheath particularly, which implies that the CRCM itself
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Figure 13. The orbits of (top left) GOES11 and (top right) GOES12 from 18 UT on 21 July to 0 UT on
23 July and the measured and simulated magnetic field with the root-mean-square (RMS) errors written
on the plots. The line representations of the four simulations are the same as in Figure 9.

generates more perpendicular preferred pressure anisotropy
than the anisotropic MHD model does.
4.1.3. Magnetosheath Thickness and
Magnetopause Position

[41] In the previous study [Meng et al., 2012a], we
have found thicker magnetosheath when including pres-
sure anisotropy in global MHD simulations. However, this
changes for simulations coupled with the RCM or the
CRCM. Figure 5 plots the number density, pressure (total
pressure in the anisotropic MHD cases) and magnetic field
strength variations along the Sun-Earth line on the dayside
from the MHD solutions at t = 8 h. For the two MHD
only simulations represented by the black lines, we see a
larger bow shock stand-off distance from the Earth and a
wider magnetosheath in the case of anisotropic MHD. In
addition, the position of the magnetopause is not affected
much by pressure anisotropy. On the contrary, for the RCM
and the CRCM coupled simulations, pressure anisotropy
brings both the magnetopause and the bow shock closer
to the Earth, resulting in a thinner magnetosheath as the
change of the bow shock stand-off distance is larger than
the change of the magnetopause position, which can be seen
from the number density and pressure profiles. The thick-
ness of the magnetosheath from different simulations can

be ordered from the thinnest to the thickest as follows:
Isotropic MHD, Anisotropic MHD + CRCM, Anisotropic
MHD, Anisotropic MHD + RCM, Isotropic MHD + CRCM,
Isotropic MHD + RCM. The different effects of pressure
anisotropy on the thickness of magnetosheath in MHD only
and RCM or CRCM coupled simulations are likely due to
the combined results from both the bow shock jump rela-
tions and the position of the magnetopause. Spreiter et al.
[1966] has found that the width of the magnetosheath (�)
is proportional to the ratio of the densities in the solar wind
(�sw) and behind the bow shock (�), and is proportional to
the stand-off distance of the magnetopause from the cen-
ter of the Earth (D), i.e., � / D�sw/�. For the two MHD
only runs, with the almost identical magnetopause locations,
anisotropic MHD gives a smaller density jump across the
bow shock than isotropic MHD, which leads to a thicker
magnetosheath in the anisotropic MHD case as its magne-
tosheath plasma is less dense. For the RCM and CRCM
coupled runs, the anisotropic MHD cases have smaller den-
sity jumps but closer magnetopauses to the Earth, which
result in thinner magnetosheaths than the isotropic MHD
cases. This implies that the magnetopause position is a more
important factor in determining the magnetosheath thickness
in these particular simulations.

5648



MENG ET AL.: PRESSURE ANISOTROPY IN MHD SIMULATIONS

Geotail

-40

-20

0

20
B

x 
[n

T
]

B
y 

[n
T

]
B

z 
[n

T
]

RMS error [nT] I: 6.5  II: 8.4 III: 6.6  IV: 20.1

Geotail

-6

-4

-2

0

2

4

6

RMS error [nT] I: 2.1  II: 2.4 III: 1.6  IV: 2.1

0
July 22

6 12 18

time [UT]

-10

-5

0

5

10

RMS error [nT] I: 3.3  II: 3.5 III: 2.9  IV: 3.6
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simulated magnetic field with the root-mean-square errors. The line representations of the four simulations
are the same as in Figure 9.

[42] The magnetopause positions from the RCM and the
CRCM coupled simulations are further away from the Earth
compared to the ones in MHD only simulations. This could
be easily explained by the larger inner magnetospheric pres-
sure in the ring current model coupled simulations, which
blows up the size of the whole magnetosphere. The closer
magnetopause from the Earth in the RCM and the CRCM
coupled simulations in the anisotropic MHD case than in the
isotropic MHD case is consistent with the pressure distribu-
tion plots in the middle and right columns of Figure 2, which
shows a reduced pressure just inside the magnetopause and
thus a smaller magnetosphere in the anisotropic MHD case.
4.1.4. Earthward Tail Flow and Magnetic
Field Configuration

[43] Another conclusion from the previous study is that
the inclusion of pressure anisotropy in the global MHD
model reduces the reconnection rate thus the Earthward flow
speed in the tail. This holds true for the ring current model
coupled MHD simulations, too. Figure 6 displays the X
direction flow speed as well as the magnetic field lines in the
Y = 0 plane from the MHD solutions at t = 8 h. The com-
parison between the top and bottom plots in each column
shows greatly reduced Earthward flow speeds in the cases
of anisotropic MHD compared to isotropic MHD. For the
RCM and the CRCM coupled simulations (Figures 6, mid-
dle and 6, right columns), this flow speed reduction is more

significant than the MHD only simulations (Figure 6, left
column). For anisotropic MHD (Figure 6, top row), the
Earthward flow in the RCM or the CRCM coupled case is
even slower than the one in the MHD only case.

[44] Figure 6 also shows the change in the shape of the
magnetic field lines when including pressure anisotropy in
the MHD model coupled with the RCM or the CRCM. In the
anisotropic MHD only simulation, the magnetic field con-
figuration is barely different from the one in the isotropic
MHD only simulation. However, with the coupling of the
ring current models, the tail reconnection site in anisotropic
MHD is much closer to the Earth than in isotropic MHD, and
the overall shape of the closed field lines is compressed in
anisotropic MHD. This, again, is consistent with the reduced
size of the inner magnetosphere in anisotropic MHD that
we discussed previously. An interesting feature of the three
bottom plots is that the coupling of the ring current mod-
els changes the magnetic field configuration significantly in
the isotropic MHD case. But this effect is almost eliminated
in the anisotropic MHD case, for which the coupling of
the ring current models does not seem to impact the mag-
netic field configuration, at least not distinguishable in the
plots. A better view is shown in Figure 7, which displays
the sign of the Bz component in the equatorial plane for the
six cases. The red-colored region in each plot essentially
represents the closed field line region in the corresponding
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Figure 15. The logarithm of the total pressure and the magnetic field lines in the Y = 0 plane at 12UT
on 22 July from the MHD solutions.

simulation. The figure indicates that pressure anisotropy
completely eliminates the field line configuration change due
to the coupling with the RCM or the CRCM. This implies the
importance of pressure anisotropy in controlling magnetic
field configuration. Even though the pressure anisotropy in
the global MHD model might be small in the inner mag-
netosphere, for instance, in the anisotropic MHD + RCM
simulation, it still has a strong effect on the closed magnetic
field region.

4.2. Geomagnetic Storms
[45] Geomagnetic storm simulations require incorporat-

ing a kinetic inner magnetosphere model with the global
MHD model in order to capture the dynamics of the ring cur-
rent during storm evolutions, thus can be used to validate the
coupling between the anisotropic MHD model and the RCM
or the CRCM.

[46] We set up the storm simulations the same way as
we do the idealized magnetospheric simulations, except that
real physical parameters replace the idealized conditions.
For the global MHD model, we set orientations of the mag-
netic and the rotational axes based on the actual time and
date to be simulated. The input time-varying solar wind and
IMF conditions are taken from the ACE and/or WIND mea-
sured values that are time-shifted based on the solar wind
propagation time from the satellite to the upstream bound-
ary of the simulation. For the RIM, we use the actual solar
F10.7 flux to calculate the ionospheric conductance. For the
RCM, we use a 10 h artificial decay term to mimic the SYM-
H recovery. This artificial term is not added to the CRCM
as several loss mechanisms for ring current particles are
incorporated in that model.

[47] In this study we simulate two moderate storm events,
one in 2009 and the other in 2010. For each event, we
conduct four simulations:

[48] Run I: Anisotropic MHD Model + RIM + RCM
[49] Run II: Isotropic MHD Model + RIM + RCM
[50] Run III: Anisotropic MHD Model + RIM + CRCM
[51] Run IV: Isotropic MHD Model + RIM + CRCM

4.2.1. The 21–22 July 2009 Storm
[52] The first event we select is the 21–22 July 2009 CIR-

driven storm. The time interval we simulate is from 18 UT
on 21 July to 0 UT on 23 July. The upstream condition input
for the global MHD model is shown in Figure 8. The IMF
z component slowly decreases, accompanied by a density
increase starting at 0 UT, 22 July, which triggers the storm.
Later Bz changes from southward to northward, then south-
ward, then northward again, which continues to disturb the
magnetosphere.

[53] The SYM-H index reflects the variation of ring cur-
rent strength during the storm. Figure 9 compares the sim-
ulated SYM-H indexes by the global MHD model from
different simulations and the measured 1 min SYM-H index.
For the RCM coupled simulations represented by the blue
lines, we see differences in the storm main phase and the
recovery phase between the anisotropic MHD simulation
and the isotropic MHD simulation. The anisotropic MHD
simulation has a slightly deeper SYM-H decrease between
0 UT and 4 UT of the main phase, which matches the data
better. The same conclusion can be drawn for the recov-
ery phase between 10 UT and 14 UT. During other times,
the anisotropic MHD simulation predicts worse SYM-H
than the isotropic MHD simulation. For the CRCM cou-
pled simulations, the anisotropic MHD and the isotropic
MHD make a big difference in the main phase, with the
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anisotropic MHD predicting much less SYM-H. In the
recovery phase, the SYM-H of the anisotropic MHD case
recovers faster than the SYM-H of the isotropic MHD
case. For a better comparison, Table 1 provides the root-
mean-square errors during the entire simulated interval and
the main phase (0 UT to 12 UT, 22 July), which indicates
that in terms of the root-mean-square error of SYM-H, the
anisotropic MHD simulations are consistently better than
the isotropic MHD simulations, except during the main
phase of the RCM coupled simulations when the anisotropic
MHD case is slightly worse. From Figure 9, we have
also noticed that the SYM-H recovers much slower in
the CRCM coupled simulations than it does in the RCM
coupled simulations. On one hand, we have applied the arti-
ficial decay term for the RCM coupled simulations. On the
other hand, the CRCM underestimates the decay rate of the
ring current.

4.2.1.1. CRCM Solutions
[54] Since the coupling between Anisotropic BATS-R-US

and the CRCM provides the first opportunity for the CRCM
to be driven by an anisotropic MHD model self-consistently,
we are also interested in the differences in the CRCM solu-
tions when driven by the anisotropic MHD model compared
to the solutions when driven by the isotropic MHD model.

[55] Figure10 displays the total pressure in the equatorial
plane from the CRCM in simulations III and IV. A series
of plots at different times during the storm is shown, which
represents the evolution of the ring current. The anisotropic
MHD driven case (Figure 10, top) and the isotropic MHD
driven case (Figure 10, bottom) generate very different ring
current patterns at same times. At 0 UT just before the storm
begins, the anisotropic MHD driven case gives very simi-
lar, though very weak, pressure distribution as the isotropic
MHD driven case does. At 4 UT when the storm grows, the
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Figure 17. The simulated density, pressure, velocity, and
magnetic field along the THEMIS A trajectory from
the MHD solutions and the actual measurement for the
21–22 July 2009 storm. The line representations of the four
simulations are the same as in Figure 9.

anisotropic MHD driven case has a weaker ring current than
the isotropic MHD driven case has, but in both cases the ring
current has a strong duskside preference. From 6 UT to 8 UT
during the storm main phase, the anisotropic MHD driven
case shows a much weaker and more dawn-dusk symmet-
ric ring current than the other simulation. Moreover, the ring
current undergoes a strong-weak-strong change from 6 UT
to 8 UT in the anisotropic MHD driven case, which is due to
the southward-northward-southward IMF turning during this
time shown in Figure 8, yet this variation is not distinctive
in the isotropic MHD driven case. This difference can also
be seen from the SYM-H variations in Figure 9. Between
6 UT and 8 UT, the SYM-H index in simulation III increases
then decreases, while the SYM-H in simulation IV has a
much smaller change. The consistency between the results
from the global MHD model and from the CRCM also ver-
ifies the correct coupling between these models. After 9 UT,
the start of the recovery, the ring current patterns in the
anisotropic MHD and isotropic MHD driven cases become
closer. However, the anisotropic MHD case shows a faster
ring current decay, so that at 12 UT, the pressure is obviously

less and its distribution is more symmetric surrounding the
Earth. An overview of the ring current strengths at all times
in Figure 10 tells us that the CRCM produces weaker ring
current when driven by the anisotropic MHD model than by
the isotropic MHD model for this storm.

[56] As a further exploration, we plot the equatorial elec-
tric potential contours from the CRCM at 6 UT for both the
anisotropic MHD and isotropic MHD driven simulations in
Figure 11. The potential distribution in the equatorial plane
is traced along the closed field lines from the potential pat-
tern in the high latitude ionosphere solved by the RIM. This
potential is due to the convection electric field, thus the
equipotential lines represent drift paths of zero (or very low)
energy particles. For high energy particles, their motions are
also governed by the azimuthal gradient-curvature drift that
is energy dependent. In the anisotropic MHD driven case
shown in Figure 11, left, the equipotential lines are more
tilted eastward near dawn compared to the isotropic MHD
driven case shown in the Figure 11, right. The tilted equipo-
tential lines extend across the nightside toward dusk. This
causes more ions injected from the nightside to be on open
drift paths and lost at the dusk boundary in the anisotropic
MHD driven case than in the isotropic MHD driven case.
As a result, the overall ion pressure is lower in the former
case. For the isotropic MHD driven case, the equipotential
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Figure 19. Same as Figure 19, but for THEMIS E.

lines are bent westward by strong field-aligned currents on
the duskside. Together with the gradient-curvature drift, ions
drift westward to the dayside through dusk, creating a strong
dawn-dusk asymmetry in pressure.

[57] Including pressure anisotropy in the global MHD
model also modifies the pressure anisotropy in the CRCM
for the coupled simulations. Figure 12 plots the pressure
anisotropy in the Z = 0 plane in the CRCM at three dif-
ferent times. Figure 12 (left column) shows the anisotropic
MHD driven case, and Figure 12 (right column) shows the
isotropic MHD driven case. Overall, the anisotropic MHD
driven CRCM produces much less pressure anisotropy than
the isotropic MHD driven CRCM does. This results from
the deeper penetration of the particles in the isotropic MHD
driven case, which leads to more perpendicular pitch angle
distribution due to the strong gradient-curvature drift and
charge exchange loss that prefer to remove particles moving
along the field lines. In the more self-consistent simulation
(anisotropic MHD with the CRCM), we observe pressure
anisotropy variation during the storm. At 6 UT when the
storm enters the main phase, the pressure is highly per-
pendicular especially on the dayside. At a later time 8 UT,
the anisotropy becomes less. At 12 UT during the recovery
phase, the pressure anisotropy increases, and the region with
perpendicular preferred pressure grows larger.
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Figure 20. The input solar wind and IMF conditions of the
MHD model for the 5–7 April 2010 storm.
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Figure 22. The orbits of (top left) GOES11 and (top right) GOES12 from 2 UT on 5 April to 4 UT on
7 April and the measured and simulated magnetic field with the root-mean-square errors written on the
plots. The line representations of the four simulations are the same as in Figure 21.

4.2.1.2. Comparison With Satellite Data
[58] We trace a number of satellites in the global MHD

model and extract the variables along the satellite trajectories
for the four simulations. The simulated results are compared
to the actual data.

[59] Figure 13 shows the GOES11 and GOES12 orbits
during the storm and the comparison between the simu-
lated and measured magnetic field along the geosynchronous
orbit. We use the same line types and colors to distin-
guish different simulations as those we use in Figure 9.
We calculate the root-mean-square errors for quantitative
comparisons, also shown in the figure. For both the RCM
coupled and the CRCM coupled simulations, the anisotropic
MHD model matches the measured X and Y components
of the magnetic field better, but does worse for the Z
component, than the isotropic MHD model does. In terms
of the shape of the magnetic field lines, the anisotropic
MHD model predicts less stretched magnetic field lines
than the isotropic MHD model does during the main phase
and the recovery phase of the storm. For the anisotropic
MHD case, the RCM coupled and the CRCM coupled
simulations are competitive in terms of reproducing the
magnetic field.

[60] The comparison with the Geotail data indicates sig-
nificant improvements when using theanisotropic MHD
model instead of the isotropic MHD model for ring cur-
rent coupled simulations, as shown in Figure 14. During this
storm time interval, Geotail was down in the tail at about
X = –30 RE. For both the RCM and the CRCM coupled
cases, the anisotropic MHD model produces better agree-
ment with data for all three components of the magnetic field
than the isotropic MHD model does. Moreover, the CRCM
coupled anisotropic MHD simulation matches the measured
magnetic field in the tail best among the four simulations. We
have also noticed that the CRCM coupled isotropic MHD
simulation predicts Bx with the wrong sign from 10UT, 22
July to 0UT, 23 July. To further investigate this problem,
we look into the simulated magnetic field configuration at
12UT on 22 July when simulation IV has a very different Bx
from the other simulations and the data, shown in Figure 15.
We overplot the field lines on the logarithmic pressure con-
tour in the Y = 0 plane, as well as the Geotail location at
12UT projected to this plane, represented by the magenta
diamond. In simulation IV, the tail is very tilted toward the
minus Z direction, so that Geotail is on the opposite side of
the current sheet to where it is in the other three simulations.
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Figure 23. The orbits of (top) Geotail from 2 UT on 5 April 5 to 4 UT on 7 April and the measured and
simulated magnetic field with the root-mean-square errors. The line representations of the four simulations
are the same as in Figure 21.

Hence, the simulated Bx is positive instead of negative in
simulation IV.

[61] During the July 2009 storm, the THEMIS data is
also available. Since THEMIS satellites measure the per-
pendicular and parallel temperatures, we could compare the
simulated pressure anisotropy to the measurement directly.
Figure 16 shows the orbits of THEMIS A, D, and E pro-
jected in the Y = 0 and Z = 0 planes with the simulated
pressure anisotropy from simulation III at 16UT on 22 July,
and the simulated pressure anisotropy ratio extracted along
the satellite trajectories compared with the actual data. All
three satellites are in the dusk sector of the dayside mag-
netosphere. THEMIS D and E have very close trajectories.
The pressure anisotropy contour plots show that perpendicu-
lar pressure dominates the polar regions, the magnetosheath,
and the region close to the Earth. The simulated P?/Pk
matches the data reasonably for both the RCM and the
CRCM coupled simulations except the pressure anisotropy
jump between 8 UT and 9 UT seen by THEMIS A. Later
we will see that during this time interval, THEMIS A went
across the magnetopause and into the magnetosheath where
the pressure anisotropy is high.

[62] We also compare the other variables measured by the
THEMIS satellites with the simulated ones. Figures 17–19
display the data-model comparisons of the number density,
pressure, velocity, and magnetic field for THEMIS A, D,
and E, respectively. For THEMIS A, both the RCM and

the CRCM coupled anisotropic MHD simulations (I and III)
improve the comparisons for almost every variable, espe-
cially for the velocity, relative to the isotropic MHD simu-
lations (II and IV). In the velocity comparison, the isotropic
MHD simulations predict large flows after 13UT, which are
not observed. The RCM and the CRCM coupled anisotropic
MHD simulations are very competitive with each other in
terms of matching the actual data. At 8UT, Bz has a sud-
den decrease and the number density has a sudden increase,
which implies that the satellite flew into the magnetosheath.
Although the simulations capture the change in the magnetic
field, they miss the anisotropy jump. For THEMIS D and
E, the anisotropic MHD simulations do not show improve-
ments as large as they are for THEMIS A. For the RCM
coupled simulations, anisotropic MHD produces even worse
results than isotropic MHD does for some variables, for
example, the number density. For the CRCM coupled sim-
ulations, the anisotropic MHD model still has better results
than the isotropic MHD model has for most variables. Inter-
estingly, for these satellite trajectories, the RCM coupled
isotropic MHD simulation II seems to do a better job than
the CRCM coupled anisotropic MHD simulation III.
4.2.2. The 5–7 April 2010 Storm

[63] The second event we select is the 5–7 April 2010
CME-driven storm. The simulated time interval is from
2 UT on 5 April to 4 UT on 7 April. The input solar wind
and IMF conditions are from the ACE satellite measurement,
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shown in Figure 20. The CME arrives shortly after 8 UT,
when the IMF Bz starts to decrease, the solar wind speed
suddenly increases, and the number density and temperature
suddenly increase.

[64] Figure 21 shows the simulated and measured SYM-
H index, from which we could tell that the anisotropic MHD
simulations predict better SYM-H for this storm than the
isotropic MHD simulations do, also shown by the root-
mean-square errors for the simulated time interval in the last
row of Table 1. In particular, for the CRCM coupled sim-
ulations, the anisotropic MHD case produces much closer
SYM-H to the measurement than the isotropic MHD case
does. The CRCM coupled isotropic MHD simulation pro-
duces overly large negative SYM-H, which indicates that it
overestimates the ring current strength. The two anisotropic
MHD simulations are competitive, with the RCM coupled
simulation matching the measured SYM-H after 12 UT on
6 April better than the CRCM coupled one, but the SYM-
H recovery simulated by the RCM coupled simulation could
have mostly resulted from the artificial decay term we added.

[65] Comparisons of the simulated magnetic field at the
geosynchronous orbit to the GOES satellite measurement
are presented in Figure 22. In general, for the CRCM cou-
pled simulations, the anisotropic MHD model captures the
variations in the data better than the isotropic MHD model
does. On the contrary, for the RCM coupled simulations,
the anisotropic MHD model does slightly worse. Of the two
anisotropic MHD simulations, the CRCM coupled one does
better than the RCM coupled one particularly for Bx. How-
ever, all simulations produce less stretched field lines than as
seen by GOES11.

[66] The comparison with the Geotail data is shown in
Figure 23. During the storm, Geotail moved from outside
the bow shock to the inner magnetosphere. All four simula-
tions reproduce the measured magnetic field well. Between
the two CRCM coupled simulations, the anisotropic MHD
simulation matches the data better according to the root-
mean-square errors. The CRCM coupled anisotropic MHD
simulation and the two RCM coupled simulations are
competitive.

5. Conclusions
[67] In order to address the ring current dynamics during

the geomagnetic disturbed time with our newly developed
anisotropic MHD model, we couple Anisotropic BATS-R-
US with the RCM and the CRCM. Since the CRCM can
resolve pitch angle anisotropy while the RCM cannot, the
coupling between Anisotropic BATS-R-US and the CRCM
is more self-consistent. For the first time, we provide two-
way coupling between a global anisotropic MHD model and
an anisotropic ring current model, which allows us to study
the global pattern of pressure anisotropy in the terrestrial
magnetosphere more completely.

[68] The two-way coupling between Anisotropic BATS-
R-US and the RCM is adopted from the coupling between
BATS-R-US and the RCM. Since the RCM assumes
isotropic pressure, both the total and parallel pressures along
the closed field lines in the anisotropic MHD model are
nudged toward the RCM pressure with the assumption that
the pressures are constant along field lines.

[69] The two-way coupling between Anisotropic BATS-
R-US and the CRCM is more sophisticated. For the
CRCM to Anisotropic BATS-R-US coupling, by feeding
Anisotropic BATS-R-US with the CRCM density and pres-
sures at “minimum B” points on closed field lines, we
calculate the density and pressures at “nonminimum B”
points along closed field lines in Anisotropic BATS-R-US
based on the relations (3), (4), and (5), which are obtained by
Liouville’s Theorem and based on a set of assumptions. For
Anisotropic BATS-R-US to the CRCM coupling, in addition
to the magnetic field information, the CRCM also uses the
density and pressures from Anisotropic BATS-R-US to set
boundary conditions.

[70] The coupled Anisotropic BATS-R-US and ring cur-
rent models are validated through global magnetospheric
simulations and compared to the standard coupled BATS-
R-US and ring current models. In the idealized simulations,
we find significantly increased nightside pressure and pres-
sure gradient toward the Earth in the MHD solutions for both
the RCM and the CRCM coupled anisotropic MHD cases
than for the anisotropic MHD only case. However, com-
pared to the corresponding isotropic MHD simulations, the
RCM coupled anisotropic MHD gives less nightside pres-
sure, while the CRCM coupled anisotropic MHD gives more
nightside pressure. In the anisotropic MHD solutions, the
pressure anisotropy in the inner magnetosphere is the largest
for the CRCM coupled simulations, and the smallest for the
RCM coupled simulations as expected. We also find that the
inclusion of pressure anisotropy in the global MHD model
that is coupled with the RCM or the CRCM brings the subso-
lar magnetopause and the bow shock toward the Earth, and
the resulting magnetosheath is thinner. In addition, we find
that the RCM or the CRCM coupled anisotropic MHD sim-
ulation produces a shorter tail, more compressed closed field
lines on the nightside, and a much slower Earthward flow jet
from the tail reconnection site, compared to the correspond-
ing isotropic MHD simulations. The conclusions from the
idealized simulations imply that pressure anisotropy plays
an important role in controlling the magnetic field configura-
tion and maybe some other physical processes in the global
magnetosphere.

[71] In two geomagnetic storm simulations, we observe
less ring current during the main and recovery phases pro-
duced by the anisotropic MHD model than by the isotropic
MHD model for the CRCM coupled simulations. For the
2009 storm, the anisotropic MHD driven CRCM produces
less anisotropic plasma for the ring current compared to the
isotropic MHD driven CRCM does. For the comparisons
with the satellite data, we see mostly improvements, but also
drawbacks from the anisotropic MHD simulations compared
to the isotropic MHD simulations. In particular, anisotropic
MHD improves the magnetic field agreement with the Geo-
tail data and the velocity agreement with the THEMIS A data
a lot for the 2009 storm, meanwhile it predicts worse field
line stretching as seen by the GOES satellites. In most cases,
the CRCM coupled anisotropic MHD simulation and the
two RCM coupled simulations produce competitive results.
Moreover, for the RCM coupled simulations, the isotropic
MHD case sometimes shows better match with the data
than the anisotropic MHD case does. In our opinion, this
reveals the importance of consistency between the global
MHD model and the ring current model. The RCM assumes
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isotropic pressure, so does the isotropic MHD model. In
principle, the RCM coupled isotropic MHD model is more
consistent than the RCM coupled anisotropic MHD model.
This might also explain the incorrect tail tilt seen in the
CRCM coupled isotropic MHD simulation in Figure 15,
as the coupling between a isotropic MHD model with an
anisotropic ring current model is less consistent.

Appendix A: Particle Distribution and Force
Balance Along Field Lines

[72] Let us assume that the particle distribution at the
“minimum B” point (represented by subscript “0”) of a
closed field line can be written as

f0(v0) = �

 
v2
?0

T?0
+

v2
k0

Tk0

!
(A1)

where v is particle speed, T is temperature, and the sub-
script “?” and “k” stand for the directions perpendicular to
and along with the magnetic field, and � is an arbitrary
function of v2

?
/T? + v2

k
/Tk. For bi-Maxwellian distribution,

�(x) = A exp(–mx/2k); For bi-Kappa distribution, �(x) =
B(1+mx/(k(2� –3)))–�–1, or in terms of characteristic energy,
�(y) = B(1 + my/(2�))–�–1 with y = v2

k
/Echk + v2

?
/Ech?, where

Echk and Ech? are parallel and perpendicular characteristic
energy, respectively. Both A and B are normalization factors,
m is particle mass, and k is Boltzmann constant.

[73] Liouville’s theorem gives the particle distribution at
an arbitrary “nonminimum B” point (represented by sub-
script “�”) as

f�(v�) = f0(v0(v�)) (A2)
To find v0(v�), we connect the components of v0 and v�
through the conservation of the first adiabatic invariant as

� =
mv2
?0

2B0
=

mv2
?�

2B�
(A3)

and the conservation of energy with neglecting potential
drop along the field line as

E =
1
2

mv2
?0 +

1
2

mv2
k0 =

1
2

mv2
?�

+
1
2

mv2
k�

(A4)

where m is particle mass and B is magnetic field strength.
From equation (A3) we obtain

v2
?0 = v2

?�

B0

B�
(A5)

which can be substituted into equation (A4) to get

v2
k0 = v2

?�

�
1 –

B0

B�

�
+ v2
k�

(A6)

Therefore,

f�(v�) = �
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v2
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) + v2
k�
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!
(A7)

Defining

T?� =
T?0

T?0/Tk0 + B0/B�(1 – T?0/Tk0)
(A8)

Tk� = Tk0 (A9)

the distribution function at “�” can be written into the same
form as the distribution function at “0” (equation (A1)):

f�(v�) = �

 
v2
?�

T?�
+

v2
k�

Tk�

!
(A10)

We can obtain the number density at “0” and “�” through

n0 =
ZZ

v0

Z
f0(v0) dv0 =

ZZ
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dv0 (A11)

and

n� =
ZZ

v�

Z
f�(v�) dv� =

ZZ
v�

Z
�

 
v2
?�

T?�
+

v2
k�

Tk�

!
dv� (A12)

f0(v0) and f�(v�) are identical except that the velocities are
scaled with different

p
T?, given Tk� = Tk0. So the volumes

wrapped by the distribution functions over velocity space,
i.e., n0 and n�, are different by a factor of (

p
T?0/
p

T?�)2,
where the square accounts for the two perpendicular direc-
tions. Hence,

n� =
T?�
p

Tk�
T?0
p

Tk0
n0 =

T?�
T?0

n0 (A13)

Then we can rewrite n� with the help of (A8) as

n� =
n0

T?0/Tk0 + B0/B�(1 – T?0/Tk0)
(A14)

Finally, using pk0 = n0kTk0, pk� = n�kTk�, p?0 = n0kT?0

and p?� = n�kT?�, we can express the number density, the
parallel and perpendicular pressures at “�” as

n� =
n0

p?0/pk0 + B0/B�(1 – p?0/pk0)
(A15)

pk� =
pk0

p?0/pk0 + B0/B�(1 – p?0/pk0)
(A16)

p?� =
p?0

(p?0/pk0 + B0/B�(1 – p?0/pk0))2 (A17)

The above relations, also given as equations (3), (4), and (5),
agree with previous studies [Spence et al., 1987; Olsen et al.,
1994; Xiao and Feng, 2006]. They are valid for any distri-
bution function �(x) with x = v2

?
/T? +v2

k
/Tk at the “minimum

B” point of a closed field line.
[74] We now show that the pressures given by (A16) and

(A17) satisfy the force balance condition along closed field
lines in anisotropic MHD. The force parallel to a field line at
an arbitrary point � is given by

Fk� = (pk� – p?�)B�rk(B–1
� ) + rkpk� (A18)

We can write (A16) and (A17) as pk� = pk0/g and p?� =
p?0/g2, where g = (p?0/pk0 + B0/B�(1 – p?0/pk0)). Substituting
into the first term of (A18), we get

(pk� – p?�)B�rk(B–1
� ) =

�
pk0
g

–
p?0

g2

�
B�rk(B–1

� )

=
(gpk0 – p?0)B�

g2 rk(B–1
� )

=
(pk0 – p?0)B0

g2 rk(B–1
� ) (A19)
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while the second term of (A18) gives

rkpk� = –
pk0
g2 g0(B–1

� )rk(B–1
� ) = –

(pk0 – p?0)B0

g2 rk(B–1
� ) (A20)

where we used the fact that B� is the only nonconstant vari-
able in g along the field line. (A19) and (A20) cancel out,
thus the net force Fk� is zero. The force balance condition is
achieved.
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